Lua documentation for lllarion scripting
v4.3

Martin *

2004,/2005/2006

*martin@illarion.org, http://www.illarion.org

Contents

1. General
1.1, Formalism e e e
1.2. General introduction
1.3. Variable types oL

2. Positions
2.1, Function e
2.2. Variables

3. Characters

3.1. Functions e
3.1.1. Text/Speech
3.1.2. Skills and Attributes
3.1.3. QUESt PTOGIeSS .« . v v i e e e e
3.14. Ttem handling oL
3.1.5. Alltherest
3.2. Variables
3.3. Constants e
4. Menues
4.1. Functions e e e e e e e e

5. ltems (scriptltem)
5.1. Functions e
5.2. Variables

6. ltems (commonStruct)
6.1. Variables e e

7. ltems (weaponstruct, armorstruct)
7.1. Variables(Weapon)
7.2. Variables (armor)
7.3. Variables (natural armor (monsters)) L L

8. World
8.1. Functions e
8.2. Variables

9. Fields
9.1. Functions e e
9.2. Variables

T = B

(@) e =)]

10.1t’s a kind of magic
10.1. Global variableso
10.2. Some words on magic L.

11.Weather
11.1. Variables e
11.2. Functions e e
11.3. Entry point e e e

12.Long time effects
12.1.Basicidea L e
12.2. Functions oL L e e
12.3. Variables L
12.4. Entry points for longtime effects o oo oo
12.5. Adding long time effects to characters o L.
12.6. Exampleo e
12.7. Ideas for usage e

13.Delayed execution and disturbation

14.Entry Points
14.1. Ttems e e e e e e e e e e
14.2. NPC . . . e
14.3. Magic oL e
14.4. MOnSEEIS o o o o e e e e e e e e e e
14.5. Fields e
14.6. Combat
14.7. Player-Characters e e
14.8. General e e e e

15.Lua
15.1. Important commands oL Lo
15.2. Built in functionso
15.3. Binary operators L e e e e
15.4. LAsts e
15.5. Calling functions of other luafiles.

16.String handling
16.1.File I/O . .« o oo

17.Examples
17.1.T6ems e e e e e
17.2.NPCs . . . e

18.Common bugs

A. Versions

24
24
24

25
25
25
25

26
26
26
27
27
28
28
29

30

31
31
32
32
32
33
34
34
34

36
36
36
37
37
38

40
41

42
42
44

47

48

1. General

1.1. Formalism

System variables and variables of structures are accessed by ”.”.
Functions are called by ”:”.

If a function has no parameters, one still has to write ().

Lines that start with ”?” refer to unclear commands.

Lines that start with ”!” refer to suggested commands.

For variables, ”r:” in front of them means reading access, ” rw:
Names in this font refer to illarion-specific key words.
Names in this font refer to lua-specific key words.

Names in (in this format) are placeholder and can be seen as variables.

Names in normal fixed font refer to a special choice of variables.

Names of functions are designed to be self explaining, therefore there are a lot of undocumented functions
around.

2

means reading and writing access.

Examples:

XKoordinate=TargetItem.pos.x;
User:talk(CCharacter.say, "Hallo Welt!");

Important note: Lua is case sensitive.

1.2. General introduction

Everytime certain events happen (someone shift-clicks an object, a monster dies, someone looks at an
object, ... see the section about ”entry points”), a script is started. The name of that script is usually
defined in the SQL-database in a seperate row. For example, the table common, which holds information
about all items in illarion (volume, weight, ...), has a row called com_script, which holds the name of the
script that is linked to each item. If someone shift-clicks an item, the lua-script that is linked to this item
in common is executed. This script then consists of several functions, defining what happens in certain
cases: the item can be used with another item (shift-clicks), with a character and so on. This means, a
general item has the following lua-file

-- item.lua
function UseItem(User, Sourceltem, TargetItem, counter, param)

end
function UseItemWithCharacter (User, Sourceltem, Character, counter, param)

end

function LookAtItem(User, Item)

end

Such a lua-file does not need all possible functions; if an item has no LookAtItem(-) function (LookAt=left-
click), it simply does nothing (special) when looked at. There are also entry points for magic and NPCs,
which can be found in the entry points section again.

1.3. Variable types

User), (Originator), { Character), thisNPC(:) Character-type variables, see chapter ” Characters”.
thisNPC is a constant for NPC-scripts!)

counter): Holds the value of the clients counter.

(
(
(Sourceltem), { TargetItem): Ttem-type variables, see chapter ”Items”.
(
(

param): Return value for menus. 0 if no menu item was chosen yet (=invoke menu), not 0 for
selected item of a menu.

(Pos), (ItemPos), { TargetItemPos), (TargetPos): Position-type variables, see chapter ”Positions”

2. Positions

2.1. Function
posStruct {position)=position(int (x),int {y),int (z))

Creates position-structure for the point (x,y,z).

2.2. Variables

rw: int (position).x
rw: int (position).y
rw: int (position).z
Usage: XCoordinate=User.pos.x

3. Characters

3.1. Functions

3.1.1. Text/Speech
void {(character):talk(int (texttype),text ”(Text)”)

(texttype) can be CCharacter.say, CCharacter.whisper or CCharacter.yell.
Lets a character say/whisper/yell some (Text).
Example: User:talk(CCharacter.say, "Hello world!”)

void (character):inform(text ” (Text)”)

Used to be ”sendMessage”: informs a player with a short (Text).
Example: User:inform(”You are drunk.”)

void {character):introduce (chrStruct (character2))
Introduces (character2) to (character)
void {character)move (int {direction),boolean {active move))

(character) makes a step into (direction). {active move) is true if the move was done actively
(normal case) and false otherwise. north=0, northeast=1, east=2, southeast=3, south=4,
southwest=>5, west=6, northwest="7, up=8, down=9; Caution: Currently, only north, south,
west and east work!

text (character):alterMessage (text (Text),int { LanguageSkill))
Returns the altered (Text) with respect to the (LanguageSkill) given.
void (character):changeQualityItem(int (id),int (amount))

Alters the quality of one item of the given (id) in either the belt, body or inventory.

3.1.2. Skills and Attributes

int (character):getSkill (text ” (SkillName)”)
void (character):increaseSkill (int (SkillGroup),text ” (SkillName)” int (value))

(SkillGroup): 1=Language, 2=Craftsmanship, 3=Magic, 4=0Other, 5=Fighting, 6=Druid,
7=Priest, 8=Bard

void {character):learn(int (SkillGroup),text " (SkillName)” ,int (Step),int {Opponent))

(SkillGroup): 1=Language, 2=Craftsmanship, 3=Magic, 4=Other, 5=Fighting, 6=Druid,
7=Priest, 8=Bard

(Step): Determines learning difficulty. Usually set to 2. 1 for very hard skillgain.
(Opponent): In case of an opponent to learn from (e.g. during a fight) the opponent’s skill.
Set it 100 otherwise.

int (character):increaseAttrib (text ” (AttribName)” int (value))

Increases the attribute given (see below) and returns the new attribute value. Use (value)=0
to read the attribute’s value. Note that this command also sends an playerupdate to all visible
characters around, so if you need to change a characters appearance it is a good idea to use
this command to make this change visible. This only holds for attributes that are allowed to
be changed, like hitpoints.

void {(character):tempChangeAttrib (text " (AttribName)” int (value), int (time))

Increases the attribute given (see below) by a value of (value) for a time (time) (given in
seconds).

void (character):setAttrib (text 7 (AttribName)” int (value))

7 (AttribName)” can be: "faceto”, "racetyp” (see below), ”sex”, "age”, "body_height”, " atti-

bR » SY RV N

tude”, "luck”, ”strength”, ”dexterity”, ”constitution”, ”agility”, ”intelligence”, ” perception”,
?willpower”, "essence”, ”foodlevel”, ”hitpoints”, "mana”, ”poisonvalue”. And ”sex” can be:
0 (=male), 1 (=female), 2 (=neuter) Note that, if you set racetyp, the effect will not be visible
immediately. To make it visible, use increaseAttrib with an attribute that can be changed,

like hitpoints.
int {character):get _race ()

"racetyp” can be: 0 (=human), 1 (=dwarf), 2 (=halfling), 3 (=elf), 4 (=orc), 5 (=lizardman),
6 (=gnome), 7 (=fairy), 8 (=goblin), 9 (=troll), 10 (=mumie), 11 (=skeleton), 12 (=be-
holder), 13 (=cloud), 14 (=healer), 15 (=buyer), 16 (=seller), 17 (=insects), 18 (=sheep),
19 (=spider), 20 (=demonskeleton), 21 (=rotworm), 22 (=bigdemon), 23 (=scorpion), 24
(=pig), 25 (=unknownl), 26 (=skull), 27 (=wasp), 28 (=foresttroll), 29 (=shadowskeleton),
30 (=stonegolem), 31 (=mgoblin), 32 (=gnoll), 33 (=dragon), 34 (=mdrow), 35 (=fdrow), 36
(=lesserdemon)

int (character):get_face_to()

"faceto” can be: 0 (=north), 1 (=northeast), 2 (=east), 3 (=southeast), 4 (=south), 5
(=southwest), 6 (=west), 7 (=northwest)

int (character):get_type ()
returns 0 for player, 1 for monster, 2 for NPC

void (character):increasePoisonValue ({value))

int (character):getPoisonValue ()

void (character):setPoisonValue (int (value))

int (character):getMentalCapacity ()

void {character):setMentalCapacity (int (value))

void {character):increaseMentalCapacity (int (value))
int (character):getMagicType ()

returns MagicType
void {character):setMagicType (int (MagicType))

MagicType: "mage”=0, ”priest” =1, "bard” =2, "druid”=3

int (character):getMagicFlags (int (MagicType))
void {character):teachMagic (int (Magic Type),int (MagicFlag))
void (character):LTIncreaseHP (int (value),int (count),int (time))

Every (time) seconds, the (value) is added to the current hitpoints; that happens (count)
times, meaning: in (count)*(time) seconds, a character gains exactly (value)*{count) hit-
points.

void {character):LTIncreaseMana (int (value),int (count),int (time))
LT-effects are additive, one character can drink several health-potions for instance.
int {character):getPlayerLanguage ()

Returns players language. 0 for german, 1 for english, 2 for french (unused).

3.1.3. Quest progress

void {(character):setQuestProgress (int (questID),int (progress))
A questprogress can be set for a specific quest.

int (character):getQuestProgress (int (questID))

Returns the questprogress for a specific quest.

3.1.4. Item handling
int (character):createItem(int (itemID),int (count),int (quality), int {data))

Item is created in the belt or backpack of (character). If that is not possible, the items will
not be created. The function returns an integer that gives the number of items that cannot
be created. world:createItemFromId might be a good choice in addition.

void (character):createAtPos (int (Position_body),int (itemId),int (count))
Creates an item at a special body position (see below).

void {character):changeQualityAt (int (Position_body),int {gly-amount))
Changes the quality by amount at position_body.

void {character):eraseItem(int (itemID) int (count))

(count) item with (itemID) (=number!) are erased from the (characters) inventory. You have
no influence on which items are deleted, you can just determine ID and number.

int (character):countItem(int (itemID))
int (character):countItemAt (text (location),int (itemID))

Counts only at a certain position; (character):countItemAt(”all”,...) is the same as (character):countItem(...)
(location) can be ”all”, "belt”, "body”, "backpack”.

void {(character):increaseAtPos (int (Position_body),int {count))
void {character):swapAtPos (int (Position_body),int {itemID),int (quality))

Position_body: BACKPACK=0, HEAD=1, NECK=2, BREAST=3, HANDS=4, LEFT_TOOL=5, RIGHT_TOOL=6,
FINGER_LEFT HAND=7, FINGER_RIGHT HAND=8, LEGS=9, FEET=10, COAT=11, LAST WEARABLE=11

To be combined with (Item):getType().

See fig.(5.1).

If quality=0, then the quality remains the same.

scrltem (character):getItemAt (int (Position_body))

(Position_body): ~ CCharacter.backpack=0, CCharacter.head=1, CCharacter.neck=2,
CCharacter.breast=3, CCharacter.hands=4, CCharacter.left_tool=5,
CCharacter.right_tool=6, CCharacter.finger_left_hand=7,

CCharacter.finger right hand=8, CCharacter.legs=9,

CCharacter.feet=10, CCharacter.coat=11, CCharacter.belt_pos_1=12,
CCharacter.belt_pos_2=13, CCharacter.belt_pos_3=14,

CCharacter.belt_pos_4=15, CCharacter.belt_pos_5=16,

CCharacter.belt_pos_6=17

This returns a ScriptItemStruct. See fig. (5.1).

conStruct {character):getBackPack ()

Returns a container-item (which is different from scriptitem and commonitem). Container-
items can be used to pick out items which are placed in it. See (Container):takeItemNr ((itempos),{count)).

conStruct (character):getDepot (int (depotld))

Returns a container-item (the depot of that Character). Containeritems can be used to pick
out items which are placed in it. See (Container):takeItemNr ({itempos),(count)).

boolean , scrltem , conStruct (Container):viewItemNr (int (itempos))

Returns three values in that specific order: bool (success), structitenm (item), containeritem
(container). (success) is true if Lua was able to get the item, (item) holds the item at that
position number and (container) holds the containerstruct in case the item at that position
was a container. This can be used together with (Container):takeItemNr ({itempos),{count)).

boolean , scrltem , conStruct {Container):takeItemNr (int (itempos),int {count))

Returns three values in that specific order: bool (success), structitem (item), containeritem
(container) and deletes this item ({count) of them). (success) is true if Lua was able to get
the item, (item) holds the item at that position number and (container) holds the container-
struct in case the item at that position was a container.

Example:

TheDepot=User:getDepot (1) ;
for i=0,30 do
worked,theltem,theContainer=TheDepot:takeItemNr(i,1);
if (worked==true) then
if (theContainer==nil) then
User:inform("This is no container. It’s item-ID is "..theltem.id);
else
User:inform("This is a container. It’s item-ID is "..theltem.id);
end
end
end

10

void (Container):changeQualityAt (int (itempos),int (amount))

Changes the quality of an item at a given position inside a container. Returns true if it
worked.

boolean (Container):changeQuality (int (itemid),int (amount))

Changes the quality of an item with a given item-ID inside a container. Returns true if it
worked.

boolean (Container):insertContainer (scrltem (item),conStruct (container))

Critical command. Inserts a container inside a container. Avoid if possible. Fragile. Returns
true if it worked.

void (Container):insertItem(scrltem (Item), boolean (merge))

Inserts an item into a container. Collects identical items which are stackable together to a
stack if (merge) is true. If there already is an item it will probably be overwritten!

void {Container):insertItem(scrltem (Item))
Inserts an item which is then placed on the last slot in that container.
int void (Container):countItem(int (itemid))

Counts the number of items in a container of a given ID. It works recursively, which means
that if there is a container in that container containing items of that ID, they are counted as
well.

int void (Container):eraseItem(int (itemid), int {count))
Erases an amount of items of a given ID. Returns an integer (meaning?).
int void (Container):increaseAtPos (int (pos), int (value))

Increases the number of items at a given position. Supposedly returns the number of items
afterwards.

boolean void (Container):swapAtPos (int (pos), int (newid), int (newquality))

Changes an item to another one with a new ID, returns true on success.
int void (Container):weight (int (rekt=0));

Returns the maximum weight of that container. (rekt) MUST be 0 for technical reasons.
int void (Container):Volume (int (rekt=0))

Just like weight, returns the volume of a container.

11

3.1.5. All the rest

boolean (character):isInRange (chrStruct (character2),int {Distance))
Returns true if (character?) is within (Distance) of (character), else false.
int (character):distanceMetric (chrStruct {character2))

Returns distance.
Very similar to islnRange, but much more flexible. Better use distanceMetric.

int (character):distanceMetricToPosition(posStruct (Position))
Returns the distance from (character) to (Position).
boolean (character):isInRangeToPosition(posStruct (Position),int (distance))
Returns true when the (character) is within the (distance) to (position) and false otherwise.
void (character):warp (posStruct (Position))
”Position” is a position-structure as described above.
void {character):forceWarp (posStruct (Position))

”Position” is a position-structure as described above. This command works exactly as warp,
but it ignores any non-passable flags on the target position. That means that you can warp
onto e.g. water using this command.

void {character):sendMenu (menStruct {Menu))

(Menu) is a menu-structure, created by subsequent application of addItem. See other menu
commands

void {character):startMusic (int (Number))

Starts music.
boolean (character):isAdmin ()

Returns true if that character is admin (GM) and false otherwise.
void {character):setClippingActive (boolean (status))

(status) must be either true (walking through walls disabled) or false; this enables the
character to walk on fields where he usualy can’t walk (water, walls, ...). Please use with care:
This has to be turned OFF again!

boolean {character):getClippingActive ()

Returns true or false.

12

3.2. Variables

r: text {character).lastSpokenText
Returns this characters last spoken line of text

: posStruct {character).pos

3

Position-structure

. text (character).name
. int (character).id
: boolean (character).attackmode

3 3 3

true if character currently attacks, false otherwise.
rw: int (character).activeLanguage

”common language” =0, ”human language” =1, ”dwarf language” =2, ”elf language” =3, ”lizard
language” =4, "orc language”=>5, "halfling language”=6, "fairy language”=7, ”gnome lan-
guage” =8, ”goblin language” =9, ”ancient language” =10

rw: (character).movepoints

3.3. Constants

chrStruct thisNPC

Refers to the NPC whose script is being invoked. It is of a Character-Type.

13

4. Menues

Caution: Menus do not work with magic spells yet. They only work with items.

4.1. Functions

menStruct MenuStruct ()

Creates an empty menu structure. Example: MyMenue=MenuStruct ();
void {MenuStruct):addItem(int (ItemID))

Adds the item with the ID (ItemID) to the Menustruct. Example: MyMenue:addItem(17);
void {character):sendMenu (menStruct { MenuStruct))

Sends the created (MenuStruct) to {character). Example: User:sendMenu(MyMenue);

Advanced Example:

List={12,34,53,99,111,189,203}; -— Create a list of item-IDs

newMenu=MenuStruct{}; -- Initialize the menu

for key,value in List do -- Start loop which picks one item of List after the other...
newMenu:addItem(List[value]); -- Add an item to the newMenu

end

User:sendMenu(newMenu) ; -- Sends the created menu.

Handling: see ” Lists”

14

5. Items (scriptltem)

There are two kinds of items in lua. This is of the type scriptltem. These types of item-variables are the
parameters in the entry point functions (TargetItem etc.). This kind of item variable holds the individual
information about the item (position, ...), but not the general ones (volume, weight, ...). It refers to
a individual item (stack). You can, however, identify the commonStruct of an individual item, which
can be achieved with the world:getItemStats ({scriptltem)). Clearly, the other direction is not possible
(gaining knowledge about an individual item via a general item.)

5.1. Functions
int (Item):getType ()

Return values: notdefined=0, showcasel=1, showcase2=2, field=3, inventory=4, belt=5

Figure 5.1.: Illustration for positions of items. Red: itempos, Green: getType

5.2. Variables

r: chrStruct (Item).owner

15

has the type of {character).

r: posStruct (Item).pos

has the type of (position), this means that the item lies on the floor.

r: int (Item).itempos

TW:
TW:
TWw:
TW:

TW:

Returns the position of an item if it is at a character.

int (Item).id

int (Item).wear
int (Item).quality
int (Item).data

The data value is an arbitrary value that can be used to individualize items.

Usable for magic weapons, key/lock system, ...

The ”quality” of an item is a combination of the actual quality (0-9) and the durability (0-99).
A quality value of 999 is a highest quality item (9) with highest durability (99). 123 would
mean: a low quality item (1) with not very good durability (23). At durability 0, an item
breaks.

Beware: When you set (Item).quality, you need to create a new item instead the old one:

TargetItem.quality=TargetItem.quality-200;
world:changeItem(TargetItem);

int (Item).number

The number of items on that stack.

16

6. Items (commonStruct)

There are unfortunately two types of items. This refers to commonStruct-Items. Note that there are
important functions for items in the chapter ”World”. This kind of item variable holds general information
about an item (weight, volume, ID,...), not individual ones like, for example, the current position or things
like that. It is, so to say, a generalized item.

6.1. Variables

3 3 3 3 3
g5
(o
by
[
ERCRCRCIC
=
0]
M.
(o]
5
ct

These variables are accessible for common struct items and script items (where they refer to
the corresponding common struct item!).

Usage:

MyItem.id, MyItem.AgeingSpeed, ...

17

7. Items (weaponstruct, armorstruct)

7.1. Variables(weapon)

int (weaponstruct).Attack

int (weaponstruct).Defence

int (weaponstruct).Accuracy

int {weaponstruct).Range

int (weaponstruct).WeaponType

int (weaponstruct). AmmunitionType
int (weaponstruct).ActionPoints

int (weaponstruct) MagicDisturbance
int (weaponstruct).PoisonStrength

3 3 3 3 3 3 3 3°3

-

.2. Variables (armor)

int {armorstruct).BodyParts

int (armorstruct).PunctureArmor

int (armorstruct).StrokeArmor

int (armorstruct). ThrustArmor

int {(armorstruct) MagicDisturbance
int {)

3 3 3 3 3 3

armorstruct).Stiffness

7.3. Variables (natural armor (monsters))

r: int (naturalarmor).strokeArmor
. int (naturalarmor).thrustArmor
r: int (naturalarmor).punctureArmor

3

18

8. World

8.1. Functions
tleStruct world:getField (posStruct (position))

(position) is a position-structure. The function returns a reference to a field.
Example:

Field=world:getField(position(22,10,-3)); -- get reference to "Field"
TileID=Field.tile; —- Determine the Tile-ID of that field

int world:getTime (text ” (time)”)
(time) can be ”year”, month”, ”day”, "hour”, "minute”, ”second”
void world:erase (scrltem (Item),int {amount))

Example 1:

world:erase (TargetItem,3)

erases 3 items on the TargetItem-Stack if possible

Example 2:

world:erase (TargetItem,0)

erases the whole Targetltem-Stack. (NOTE: Temporarily DISABLED!) If there are not
enough of the items to erase, this function returns ”false” and does not delete anything.

void world:increase (scrltem (Item),int {count))

Increases the item-counter of (Item) ((Sourceltem), (Targetltem), ...) for (count).
void world:itemInform(chrStruct (User),scrltem (Item),text ”(Text)”)

Useable in LookAtItem: Displays text as item name.
void world:swap (scrltem (Item),int (newltemID),int (quality))

Exchanges (Item) (Scriptltem!) with a new one with (newltemlId) and (quality).

scrltem world:createItemFromId (int (ItemID),int (count),posStruct (position),boolean {always-flag),int
(quality),int (data))

where (position) is a position-structure and the always-flag is true (create also when there is
already something on that field) or false, depending on how to create the item. It returns
a script item sctruct.

void world:createItemFromItem(scrltem (Item),posStruct (Position),
varalways-flag)

19

where (Item) is of the scriptitem-structure. (NOT of the common-structure! Therefore this
IS usable with TargetItem!). It creates an identical copy of a scriptitem.

void world:createMonster (int (monsterID),posStruct (position),int (movepoints))

(monsterID): 1=Mumie, 2=Insects, 3=scorpion, 4=skeleton, 5=orc, 6=demonskeleton, 7=be-

holder, 8=demon, 9=rotworm, 10=spider, 11=sheep, 12=pig, 13=troll, 14=skull, 15=wasp,
16=foresttroll, 17=shadowskeleton, 18=stonegolem, 19=goblin, 20=gnoll, 21=dragon, 22=male_drow,
23=female_drow, 24=I1Daemon, 25=Daemonenerscheinung, 27=demonskeleton, 30=Lesser Mummy,
31=Mummy, 32=01d Mummy, 33=Insects, 34=Swamp Insects, 35=Sand Scorpion, 36=Cave
Scorpion, 37=0rc, 38=0rc Warrior, 39=0rc Berzerker, 40=Troll, 41=Forest Troll, 42=Weak
Skeleton, 43=Skeleton, 44=Skeleton Guardian, 45=Skeleton Fighter, 46=Beholder, 47=De-

mon Spy, 48=Rotworm, 49=Enormous Spider, 50=Posion Spider, 51=Male Drow, 52=Drow
Warrior, 53=Drow Sworddancer, 54=Drow Mistress, 55=Thief, 56=Highwayman, 57=Looter,
58=Immortal, 59=Immortals Ghost, 60=Specter, 61=Demonic Skeleton 62=Demonic Voyeur,
101=runeguardmes, 102=runeguardra, 103=runeguardluk, 104=runeguardtah, 105=runeguard-

sij, 106=runeguardcun, 107=runeguardqwan, 108=runeguardyeg, 109=runeguardlev, 110=rune-
guardhept, 111=runeguardkah, 112=runeguardsav, 113=runeguardorl, 114=runeguardkel, 115=rune-
guardpen, 116=runeguardjus

void world:makeSound (int { Number),posStruct {position))

Starts soundeffect. 1=scream, 2=sheep, 3=sword hit, 4=thunder, 5=bang, 6=chopping wood,
7=fire, 8=smithing, 9=water splash, 10=pouring in (bottle), 11=saw, 12=drink, swallow,
13=snaring noise

void world:gfx (int (Number),posStruct (position))
Starts graphicseffect on (position).

void world:changeTile (int {TileID),posStruct {position))
comltem world:getItemStats (scrltem (Item))

Returns an commonitem-struct from an (Item) that is a scriptitem (like TargetItem). Exam-
ple:

myItem=world:getItemStats(TargetItem)
if (myItem.Weight<100) then

end

comltem world:getItemStatsFromId (int (ItemID))
Returns an item-struct like world:getItemStats ((ltem))
scrltem world:getItemOnField (posStruct (Position))
Returns a scriptltem on that field.
boolean world:isItemOnField (posStruct (Position)) boolean world:isCharacterOnField (posStruct (Position))

Returns true for a Character standing on that position and false otherwise.

20

chrStruct world:getCharacterOnField (posStruct (Position))

Returns a character-struct. See chapter ” Characters”. FExample:

myPosition=position(122,12,3);

if isCharacterOnField(myPosition) then
myPerson=getCharacterOnField (myPosition);
myPerson:talk(CCharacter.say,"You found me!");

end

chrStruct world:getPlayersInRangeOf (posStruct (Position), int (Range))

Returns a list of character-structs who are in the (Range) of {Position). See chapter ” Char-
acters” and lists in lua.

chrStruct world:getCharactersInRangeOf (posStruct (Position), int (Range))
chrStruct world:getNPCSInRange0f (posStruct (Position), int (Range))
chrStruct world:getMonstersInRange0f (posStruct (Position), int (Range))
chrStruct world:getPlayersOnline ()

Returns a list of character-structs of all players online. See chapter ”Characters” and lists in
lua.

void world:changeQuality (scrltem (Scriptitem),int (amount))
Changes the quality of a scriptitem (Targetltem, ...) for {(amount).
void world:changeTile (int (tileid),posStruct {position))

Changes the tile on position-struct ”position” to tileid. To be combined with the following
command.

void world:sendMapUpdate (posStruct (position),int {range))
Send a map update to all clients of characters that stand in range of that position.
text world:getItemName (int (Itemid),int { PlayerLanguage))

Returns string that represents the itemname of the item with this id in playerlanguage ac-
cording to table ”itemnames”.

void world:changeItem(scrltem (Scriptltem))

Changes a scriptitem against a new one. Handle with care! Example:

function UselItem(User,Sourceltem,TargetItem,Counter,Param)

Sourceltem.id = 1 -- we change the source Item to a sword
Sourceltem.quality = 699 -- a really good sword.

Sourceltem.wear = 10 -- a sword wich rots in a very long time
world:changeItem(Sourceltem) -- now the item is changed

end

21

boolean , wpnStruct world:getWeaponStruct (int (itemID))

Returns two values: bool (true if it is a weapon) and the weaponstruct of the given item (if
there is any).
FEzxzample:

foundWp,MyWeapon=world:getWeaponStruct(1);
if (foundWp==true) then

User:inform("Attack:
end

. MyWeapon.Attack .. " def: " .. MyWeapon.Defence);

boolean , armStruct world:getArmorStruct (int (itemID))
Returns two values: bool (true if it is an armor) and the armorstruct of the given item.
boolean , natarmStruct world:getNaturalArmor (int (racelD))

Returns two values: bool (true if that race has natural armor) and the naturalarmorstruct of
the given race.

8.2. Variables

r,w: weatherStruct weather

Returns the current weather.

22

0. Fields

09.1. Functions

In general, these functions will be combined with world:getField (posStruct (position)) most of the
time.

void (field):swapTopItem(int (newld), int (quality))

int {field):countItems ()

Returns the number of items that are placed on top of that field.
scrltem (field):getStackItem({stackpos))

Returns the item with position (stackpos) (0 being the bottom item) within the pile of items
on this field. If (stackpos) exceeds the number of items on that field, a 0-item is returned
(id=0), therefore it is a good idea to check the number of items on that field first.

Changes the top item on a field to newld with quality. 0 to let the quality unchanged.

void (field):changeQuality0fTopItem(int (amount))

9.2. Variables
r: int tile

Returns the tile ID of that field. Recommended use with world:getField((position)).

23

10. It's a kind of magic

10.1. Global variables

thisSpell

Refers to the ID of the spell that is currently casted.

10.2. Some words on magic

Casting a spell is done by selecting one or more runes and eventually selecting a target. We assign
numbers to these runes like in fig(10.1). Every spell gets a unique spell-ID which is entirely determined

Figure 10.1.: The runes

by the used runes. Suppose we have to use the runes with the numbers a; ...a, to cast that spell, the
spellld can then be calculated by

n
Lipen = 22%—1 =gm~lpge-l 4 . 4 gtn—l (10.1)
k=1

To give a concrete example: Imagine for your spell you have to use runes 2 and 5. The spell Id then is

2
Lpen = » 2%t =0l 9eel = 9271 4 9=l — 9l 49l =9 4 16 =17 (10.2)
k=1
The caption of every spell script should include a brief description of the spell, the rune combination and
the SQL insert statement (as comments, of course):

INSERT INTO spells VALUES((spellID),(magicType), (scriptname.lua))
In our case, that might be: INSERT INTO spells VALUES(17,0,’m_17_fireball.lua’)

24

11. Weather

Till now, weather is a global effect. Once you set the weather to a specific value, it’s the same everywhere.
Eventually there will be "areas” of weather in the future. A weatherStruct is a set of different variables,
just like any other struct so far. Altering these variables changes the weather.

11.1. Variables

rw: int (weatherStruct).cloud _density
Varies between 0 (no clouds) and 100 (full clouds).

rw: int (weatherStruct).fog density

rw: int (weatherStruct).wind dir

rw: int (weatherStruct).gust_strength

rw: int (weatherStruct).percipitation_strength
rw: int (weatherStruct).percipitation_type

rw: int (weatherStruct).thunderstorm

rw: int (weatherStruct).temperature

11.2. Functions

11.3. Entry point

There is just one entry point for weather scripts: function changeWeather ()

Is invoked everytime the weather should be changed.

25

12. Long time effects

12.1. Basic idea

The idea of long time effects is the following:

A long time effect is something bound to a character. It can be that you alter some skills or stats at
some point (after some action had bin going on, for example after drinking a potion or alike) and undo
that change later (after one hour, after 20 seconds, ...). Now, if a character logs out during such an effect
is active, all the variables are written to the database and can be read when the character logs on again.
Technically, an effect is a collection of different variables, which hold:

e The name and ID of the effect

A script that defines the effect

A counter that counts how often an effect had been called already

A variable that controlls when this effect on this character will be called again

Several self defined variables that hold all the infos you need

Long time effects are generally handled by a table called longtimeeffects with the columns 1te_effectid,
lte_effectname and lte_scriptname. 1te_effectid is an arbitrary ID for the effect you are planning,
lte_effectname is a name which has no technical meaning, you can use it to describe your effect,
lte_scriptname refers to, as usual, the name of the script that should be invoked.

If you, for example, want to script a potion that adds 10 to a characters perception attribute for the
next 10 minutes, you have to do the following: First, create a new entry in the longtimeeffects-table, for
example with INSERT INTO longtimeeffects VALUES(15,’mypotion’,’mypotion.lua’). The next
thing to do is to write a script defining the potions behaviour: It has to create a new effect using
the CLongTimeEffect-command and then assign this newly created effect to the character with the
addEffect-command. By doing that, the function addEffect (notice the difference between the function
and the comman!) in the script assigned to that long time effect (ID) is called (only one time, at the
start of the effect!).

There you can, for example, set a variable that determines the value which modifies the perception
attribute and also lowers it. After the time given in the addEffect-command, the function callEffect
will be called. If you want the function callEffect to be called again, it has to set the value .nextCall
to the time when you want the function to be called again and return true. At the last call, (in this
simple case probably the first), it is advisable to set the changed attribute to the correct value again.

However, if the character logs out, the temporary attibute change would have no effect at all because
it is not written to the database. Therefore, there is the function loadEffect: It is called as soon as
a character logs in. At this point, you can read the variable which holds the attribute change with
effect:find and change it back to the altered value.

12.2. Functions

void (effect):addValue (text (name),int (value))

26

(name) is an arbitrary name for a variable that can be introduced and filled with (value) and
is added to that effect. It can later (at one of the following calls, for example) be read or
changed again.

void {effect):removeValue (text (name))
(name) is the name of a value that will be removed from that effect.
boolean , int {effect):findValue (text (name))

This function returns true if a value (name) is found plus its value and false otherwise.
Note that these are two values!

void (Character).effects:addEffect (CLongTimeEffect ({effect-ID),boolean (call addEffect)))

This function adds the effect (effect-ID) to a character. If (call addEffect) is true, the function
addEffect will be called.

boolean {Character).(effect):removeEffect ({effect-ID))

This function removes the effect (effect-ID) from a character. It returns a boolean which
indicates whether that worked or not.

12.3. Variables

r: int (effect).effectId

r: int (effect).effectName
r,w: int (effect).nextCalled
r: int (effect).lastCalled
r: int (effect).numberCalled

12.4. Entry points for longtime effects
Inside that script which was invoked, there are several possible entry points that can be called:
function callEffect ((Effect), (Character))

MUST either return true if the effect should be called again or false if not! (Effect).nextCalled
has to be set. It will be lowered by 1 every 10% second and callEffect will be called as soon
as it reaches 0.

function addEffect ({Effect), (Character))

Is invoked when an effect is newly created.
function removeEffect ({Effect), (Character))

Is invoked after an effect ended (by having callEffect return false.
function doubleEffect ({Effect), (Character))

Is invoked when an effect is added to a character that already has that effect. Note that a
character can hold just one effect of one type at a time!

function loadEffect ((Effect), (Character))

Is invoked when a player character logs into the game. It should be used to set temporary
stats changes and so on, which can be stored in effect-variables, using findValue and so on.

27

12.5. Adding long time effects to characters

12.6. Example

Imagine the following situation: You drink a potion of a fluid and after that, you get ”drunk”, that means
that your perception and agility are lowered and you sometimes make uncontrolled steps for the next 4
minutes. The first thing to do is to create a table entry in longtimeeffects in the following way:

lte_effectid | lte_effectname | lte_scriptname
______________ +________________+_________________

666 | alcohol | 1te_alcohol.lua

To start with, we need to script the bottle (bottle.lua) which adds the effect 666 (alcohol) to the
character drinking that bottle.

function UselItem(User,Sourceltem,TargetItem,Counter,Param,LTstate)

alcEffect = User.effects:find(666); -- does effect #666 already exist?

if (alcEffect == nil) then —- if that effect is not there...
alcEffect = CLongTimeEffect(666,10); -- create new effect
User.effects:addEffect(alcEffect,true); -- add effect #666

-- this calls funct. "addEffect(...)" in the LT-script.
-- 1 second until first call, true=invoke addEffect

end
alcEffect = User.effects:find(666); —- does effect #666 exist now?
-- if so, read it into "alcEffect"

if (alcEffect == nil) then -- effect not found (security check)

User:inform("An error occured, inform a developer.");

return; -- exit immediately if not found!
end
alcEffect:addValue("alcLevel",10); -— sets the alclLevel-value to 10.
alcEffect:addValue("strMod",-5); -- sets modifier for strength to -5.

end

So, this script simply adds alcEffect (666) to the User of the bottle and adds the value alcLevel to

this effect and sets it to 10.
The next thing to be done is to define this effect. This is done in the actual long time script we defined
in the database before, 1te_alcohol.lua:

function addEffect(myEffect, Character) -- called only the first time
Character:inform("You feel a little bit dizzy.");
found, strMod = myEffect:findValue("strMod");

if found then —-- read the str modificator
Character:increaseAttrib("strength",strMod) ;
else —-- if modificator is not found

Character:inform("Error, please inform a developer");

28

end

end
function callEffect(myEffect, Character) -- is called everytime
found, alcLevel = myEffect:findValue("alcLevel");
-- get value
Character:talk(CCharacter.say,"Hick!"); -- Hick!
-- add some more effects
if not found then
Character:inform("Error, please inform a developer!")
return false; -- bug occured!
else
if (alcLevel>0) then -- alcohol still has effect
myEffect.nextCall=200; -- next call in 20 s.
myEffect:addValue("alcLevel" ,alcLevel-1);
return true;
else —- alcohol has no more effect
myEffect:removeValue("alcLevel");
return false; -- return false and delete value
end
end
end

12.7. Ideas for usage
Long time effects can be used for many effects, here are just some ideas:
e Illness, epidemy, infections and deseases

e Injuries

Effects of potions (of all kinds)

Effects of poison

Punishment

29

13. Delayed execution and disturbation

There is a way to have a script being executed after some time. Of course, this could also be done using
long time effects, which were described above. However, there is something that long time effects can’t
detect: If ”something” happened between two invokations of an effect. Take, for example, a magician who
casts a spell. Assume that there is a delay between casting that spell and having an effect (it needs some
time of concentration). What happens if, for example, this mage is disturbed during the concentration
phase (because he’s under attack or alike)? There is no way to detect that in long time effect scripts.

30

14. Entry Points

14.1. Items

function Useltem({User), (Sourceltem),{ Targetltem), (counter), (param))
When one item is used (with another item or alone).
function UseItemWithCharacter ((User), (Sourceltem), (Character), (counter), (param))
When an item is used with a character.
function UseItemWithField((User), (Sourceltem), (TargetPos), {counter), (param))
When an item is used with a field (has to be empty=no item lying on the floor!).
function LookAtItem({User), (Item))
When someone looks at an item.
function MoveItemBeforeMove ({User), (Sourceltem), (Targetltem))

Is invoked when someone tries to move an item before the move is commited. If this function
returns false the move of the item will not be carried out; that can be used for cursed items.
Basically, (Sourceltem) is the item before it was moved, (Targetltem) is the item after it was
moved.
IMPORTANT: It MUST return either true or false, otherwise the server crashes! (return
true;)

function MoveltemAfterMove ((User), (Sourceltem), (TargetItem))

Is invoked after someone moved an item. See also MoveItemBeforeMove(.)
function NextCycle()

Is invoked every 10 seconds for commonitems.
function CharacterOnField((User))

Is invoked if someone steps on that item (which therefore lies on the floor); good for traps
and fields. This function requires that the corresponding item has a specialitem-flag in the
db-table tilesmodificators

31

14.2. NPC

For effective usage of NPCs and their scripts please read the section about string handling.
function nextCycle()

Is invoked every few server cycles (=approximately constant time intervalls, %s). IMPOR-
TANT: MUST exist in NPC scripts!

function receiveText ((TextTyp), (Text), (Originator))

Is invoked if the NPC hears someone speaking (even himself!).
function useNPC((User), (counter), (param))

Is invoked if the NPC is used (shift-click) by (User) without target.

function useNPCWithCharacter ((user), (targetChar), (counter), (param))
function useNPCWithField ((user), (targetChar), (counter), (param))
function useNPCWithItem((user), (targetChar), (counter), (param))

14.3. Magic

function CastMagic ({Caster), (counter), (param))
Is invoked when (Caster) casts a spell without target.
function CastMagicOnCharacter ((Caster), (TargetCharacter), (counter), (param))
Is invoked when (Caster) casts a spell on another character/monster ({ TargetCharacter)).
function CastMagicOnField((Caster), (pos), (counter), (param))
Is invoked when (Caster) casts a spell on a field at the position (pos).
function CastMagicOnItem((Caster), (Targetltem), (counter), (param))

Is invoked when a spell is casted on an item.

14.4. Monsters
function onDeath((Monster))
Is invoked as a monster dies.
function receiveText ((Monster), (TextTyp), (Text), (Originator))
Is invoked when a monster ({Monster)) receives spoken text.
function onAttacked((Monster), (Attacker))
Is invoked when a monster is attacked.

function onCasted({Monster), (Caster))

32

Is invoked when a spell is casted on a monster.

function useMonster ((Monster), (User), (counter), (param))
Is invoked when a monster is used by (User)

function useMonsterWithCharacter ((Monster), (User), { TargetChar), (counter), (param))
Is invoked when a monster is used with a character.

function useMonsterWithField ((Monster), {User), (Pos), (counter), (param))
Is invoked when a monster is used with a field.

function useMonsterWithItem({Monster), (User), (Item), (counter), (param))
Is invoked when a monster is used with an item.

function onAttack({Monster),(Enemy))
Is invoked every time when a monster would hit the enemy.

function enemyOnSight ((Monster),(Enemy))

Is invoked every time when a monster sees an enemy. IMPORTANT: MUST return true (did
something) or false (did nothing)! It is not invoked when the monster stands on a field next
to the enemy.

function enemyNear ({Monster),(Enemy))

Is invoked every time when a monster sees an enemy and stands next to it. Works exactly
like enemyOnSight, MUST return true or false!

14.5. Fields
function useTile((User),(Position),(counter),(param))
Is invoked when a tile is shift-clicked (used).
function useTileWithCharacter ((User),(Position),(targetCharacter),(counter),(param))
Is invoked when a tile is shift-clicked (used).
function useTileWithField((User),(Position),(targetPosition),(counter),(param))
Is invoked when a tile is shift-clicked (used).
function useTileWithItem({User) (Position),(Item), (counter),(param))
Is invoked when a tile is shift-clicked (used).
function MoveToField ((User))

Is invoked if a character moves on that triggerfield (entry in ”triggerfields” necessary).

33

function MoveFromField({User))

Is invoked if a character moves away from that triggerfield.
function PutItemOnField ({Item),(User))

Is invoked if an item is put on that triggerfield.
function TakeItemFromField({Item)(User))

Is invoked if an item is taken away from that triggerfield.
function ItemRotsOnField((oldltem),(newltem))

Is invoked when (oldItem) rots into (newltem) on a triggerfield.

14.6. Combat

For combat, there is one main file named standardfighting.lua. It is called everytime a character tries to
hit another character. It is important that you cannot reload the DB definitions when this file does not
work!

function BasicFighting((Attacker),(Defender))

Is invoked inside standardfighting.lua if the weapon used has no script assigned to it in table
weapons.

function onAttack({Attacker),(Defender),(bodyPosition))

Is invoked inside a weapon script if this weapon is used to attack a character at every hit.
Don’t forget to subtract AP! Currently it is only invoked if the weapon is helt in the right
hand, so (bodyPosition) will always be the number representing the right hand.

14.7. Player-Characters

There is an entry point that gets called every time a player-character logs into Illarion. There is just one
script that is invoked which is named login.lua. It is called every time a character logs in.
function onLogin((Character))

This function is invoked inside login.lua.

14.8. General

There are ways to invoke arbitrary scripts (functions therein) without player or NPC action.
function (functionname)()

This script is invoked by having an entry in the database table ”scheduledscripts” after
some given time intervall.
Example:

sc_scriptname

scheduletest.lua 16 | makeeffect

34

This will invoke the function makeeffect() in the script scheduletest.lua every 14-16
seconds (a random time between 14 and 16 seconds).

35

15. Lua

15.1. Important commands

For a good summary of the importand commands and how they work look at http://lua-users.org/wiki/TutorialDirectory
Of special interest are: for, <f, function, while and the concept of lists.

15.2. Built in functions
math.random()

Returns a random number between 0 (incl.) and 1 (excl.).
math.random({ Upper))

Returns a random integer between 1 and (Upper) (inclusive).
math.random({ Lower),(Upper))

Returns a random integer between (Lower) and (Upper) (inclusive).
math. abs ({(number))

Returns the absolute value of a number. Example: math.abs-4.2 -; 4.2
math. ceil ({(number))

Rounds (number) to the next higher integer.
math. floor ({number))

Rounds (number) to the next lower integer.
table.getn ({List))

Returns the number of entries in a table.
string. find ((text!),(text2))

Returns nil, if (text2) was not found in (textl). If, however, (text!) contains (text2), it
returns the position of the starting character of (fext2) in (text1), the end position of (text2)
in (text!) and, in case one uses so called captures, all the captures found. Captures are a
powerfull concept for stings to analyze them by pattern matching. See the lua wiki.

36

15.3. Binary operators

A=B;

A will get the value of B.
A==

A is compared with B; true for A=B else false. Used in if statements and alike.
A~=B

A is compared with B; false for A=B else true (true if A and B are not equal).

15.4. Lists

Lists are collections of variables. Lists can be created by the following simple procedure: # Start a
Lua-list and insert the entries you want (itemIDs etc.) # Run through the list (with a loop) and do what
you need (add them to a menue etc.) # Start the process defined by 1. and 2. (send the menue to the
player) Creating a list is easy:

ListA=(valuel),(value2),(value3),...

You can access elements of that table by
ListA[(number of element)]

for instance
ListA[2]

would be
(value2)

Creating a loop is easy as well:
for i = 1,5 do

end

runs through ”...” 5 times, the first time with i=1, then i=2, ... to i=5. Combining that with a list would
give:

ListA={valuel,value2,value3,valued4,value5}
for i = 1,5 do

-- do something with ListA[i]
end

Example 1: Lets say we want to have a list of items added to a menue.

37

ItemList={45,54,67,81,110,145,215} -- create list

UserMenu=MenuStruct () -- make new menu

for i = 1,7 do -- start loop
UserMenu:addItem ItemList[i] -- add Item to menu

end

User:sendMenu UserMenu -- send menu

Example 2: Lets say we want to have a list of items which are only accessible for the player for certain
skills. We create a difficulty list.

ItemList={45,54,67,81,110,145,215} -- create list
DiffList={ 1, 7,45,90, 25, 45, 65} —- list of difficulties
UserMenu=MenuStruct () -- make new menu
for i = 1,7 do -- start loop
if (User:getSkill("smithing")>=DiffList[i]) then -- if User has enough skill
UserMenu:addItem(ItemList[i]) -- add Item to menu
end
end
User:sendMenu UserMenu -- send menu

If you are filling a list, you have to take care about the following:
Example 3: Filling a list with entries

MyList={}; -- initialize list (IMPORTANT!)
MyList[1]=12;

MyList [2]="Hello";

MyList [3]=56;

The important part is the first line: Without it, the script would not work. Lets now look to multidi-
mensional lists (tables, for example):
Example 4: Tables

MyTable={};

MyTable[1]={};

MyTable [2]={};

MyTable[1] [1]=23;
MyTable[1] [2]=45;
MyTable[1] [3]1=34;
MyTable[2] [1]="Maoam";
MyTable[2] [2]="Hello";
MyTable[2] [3]="Hi there!";

15.5. Calling functions of other lua files

It is possible to call a function of another (existing) lua file. However, this might cause troubles, as
one can only use the whole lua file and it is probable that functions have the same name. This has to
be taken care of! To do that, one has to use the dofile(”(path)/(filename)”) command outside any
function. This makes any function in ”filename” accessible from within your file. If handled carefully,
this may save a lot of work.

Example:
file 1.lua:

38

function DoSomething(User,text)
User:inform(text);
end

file 2.1lua:

dofile("/usr/share/testserver/scripts/file_1.lua")
function TestingDofile(Character)

DoSomething(Character, "Testing this feature!");
end

Note that the testserver scripts are located in /usr/share/testserver/scripts/ and the realserver
scripts in /usr/share/illarionserver/scripts/

39

16. String handling

This is an important topic, as it is relevant for the use of Lua for NPCs (and eventually monsters). The
seemably most important function is:
string. find ((textl), (text2))

Returns a number that indicates the position in textl of the beginning of the first occurence
of text2 in textl and another number that indicates the last position of the last occurence.

Example:

a,b=string.find("Hello world","1lo");

-> a=3, b=b

a,b,c,d=string.find("I buy 20 shoes",".xbuy (%d+) (.+)");

e Expressions in brackets ”(...)

-> a=0, b=14, c="20", d="shoes"

” are returned to the variables. Without them, we would just have a
and b.

” N

means: any character, digit, just anything.

e ”*” means: repetition of the previous, including 0 repetitions; .*’ therefore could mean any string,

including an empty one ().

e 7+” means nearly the same as '*’, except that it has to have at least 1 repetition, therefore the

empty string is not included.

e 7%s” simply means a space (7 7). "a¥%sb” therefore means ”7a b”.

e 7%d” means any digit. Together with ”+” we have ”%d+”, which means: at least one digit, but it

can be more.

e 7 [Ff]” would mean: The character must be a "F” or a ”£”. ” [Hh] [Ee] [L1]+[00]” therefore can

be "hello” or "helo" or "HeLlo” or "heLLL10” or...

Therefore the above ” .¥buy (%d+) (.+)” means: Search for a string where you have:

1.

oW

any characters or nothing

. followed by ”buy”

followed by a space (7)

followed by (at least) one or more digits
followed by space

followed by one or more characters of any type (could be ”shoes”, but could also be ”!198(jj” or
"hallo” or 79982”)

40

Beware: ¢ and d are both strings, even if they contain a number like ”23”. If you perform mathematical
operations with them (c*2), they behave like numbers, if you compare them (if c¢==23), they behave like
strings, meaning that (c="23"; if c==23 then...) will NOT work, whereas (c="23"; if c*1==23
then...) WILL work, because c¢*1 is converted into a number.

If a string is not found inside another string, it returns nsl.

16.1. File 1/0

It is possible to read and write data from/into files. It is important to use files and directories where the
scripts are permitted to read and write.
Example:

filepoint,errmsg,errno=io.open("/home/martin/scrdata/testing.luadat","r");
thisline=filepoint:read("*line");

User:inform("This line reads as: "..thisline);

filepoint:close();

filepoint,errmsg,errno=io.open("/home/martin/scrdata/testing.luadat","w+");
filepoint:write("User "..User.name.." called that script!");
filepoint:close();

For further information see the official lua documentation (http://www.lua.org)

41

17. Examples

17.1. Iltems

Let us first begin with something simple. Say we want to have a script for a sword with the item-ID 27
(fictional) which, when shift-clicked should simply be deleted. The first thing to do is to create an empty
file like ”simple_sword.lua” in some text editor (be sure that it uses unix-style end-of-lines!). This file
needs a Useltem-function, because the sword should disappear when it is used (shift-clicked). Then we
need to write down the command for deleting that item. That’s it.

-- simple_sword.lua

function Useltem(User, Sourceltem, TargetItem, counter, param)
world:erase(TargetItem,1);

end

That will do the job. Now we only need to copy this script to /usr/share/testserver/scripts/ (via svn!)
and make an entry in the commons-table of the database into the com_script colum for item 27 which
reads simple_sword.lua. Only do a #r inside Illarion’s testserver and it works. Let’s say that we want to
extend our script a little. The character should know that he has deleted something. We add an extra
line that informs the player:

-- simple_sword.lua

function Useltem(User, Sourceltem, TargetItem, counter, param)
world:erase(TargetItem,1);
User:inform("You have deleted that damn sword!");

end

Copy that file over the old one, do a #r and here we go. As soon as you shift-click the sword, the sword
disappears and you get the message ”You have deleted that damn sword!”. We are still not satisfied
with that. Nono. We want to give out some information about that sword, too. It’s weight for example.
Now, how to do that? This is a little more complex (only a little) because there are two ”types” of items
that lua knows: the one is the kind of variable like " TargetItem”, which does not know anything about
it’s weight or other properties. The other one knows everything about itself. So we first have to convert
TargetItem into such an object. Then we need to get the weight of that. That is done as follows:

-— simple_sword.lua
function UseItem(User, Sourceltem, TargetItem, counter, param)
world:erase(TargetItem,1);
MyItem=world:getItemStats(TargetItem) ;
MyWeight=MyItem.Weight;
User:inform("You have deleted that damn sword which weights "..MyWeight);
end

Proceed as before. Let’s go on. Next step is: We want to create a new item as soon as the old is destroyed.
Let’s say the item with the ID 28. Not just one, but, say, 5 of them.

42

-— simple_sword.lua
function UseItem(User, Sourceltem, TargetItem, counter, param)
world:erase(TargetItem,1);
User:createltem(28,5,333);
MyItem=world:getItemStats(TargetItem) ;
MyWeight=MyItem.Weight;
User:inform("You have deleted that damn sword which weights ".MyWeight) ;
end

Now, how simple is THAT? Wow. We are still not satisfied. For one reason or another, we do not want
to delete that sword in any case. We only want to delete it if the corresponding character does NOT
carry a magic key (fictional ID: 30) anywhere on his body. How about that then?

-- simple_sword.lua
function Useltem(User, Sourceltem, TargetItem, counter, param)
keys=User:countItem(30);
if (keys==0) then
world:erase(TargetItem,1);
User:inform("You have deleted that damn sword which weights ".MyWeight);
end
User:createltem(28,5,333);
MyItem=world:getItemStats(TargetItem) ;
MyWeight=MyItem.Weight;
end

This can easily be extended with all the functions and commands listed above. However, let us now
turn to more advanced examples. Take, for example, a lockable door. There are several possibilities
to lock a door, only limited by the scripters creative mind. The most basic one seems the following:
Asume you have two versions of a door: an open one (fictional ID: 50) and a closed one (fictional ID: 51).
This door stands on the fictional coordinates (30,30,0). The principle works as follows: closed=locked,
open=unlocked, you replace the closed door (50) by the open one (51) if someone uses the correct key
(fID: 60) with the closed door. This means that the opening and closing of that door entirely lies in the
script of the key (as it is the first object to be shift-clicked!).

-— key_door.lua
function UseItem(User, Sourceltem, TargetItem, counter, param)
MyDoor=world:getItemStats(TargetItem) ;
if (MyDoor.id==50) then
MyDoorPosition=TargetItem.pos;
DesiredPosition=position(30,30,0);
if (MyDoorPosition=DesiredPosition) then
world:erase(TargetItem,1);
world:createltemFromId(51,1,DesiredPosition,true,333)
end
elseif (MyDoor.id==51) then
MyDoorPosition=TargetItem.pos;
DesiredPosition=position(30,30,0);
if (MyDoorPosition=DesiredPosition) then
world:erase(TargetItem,1);

43

world:createItemFromId(50,1,DesiredPosition,true,333)
end
end
end

This can of course be done in a more elegant way, as the same structure appears twice. However, for
learning purposes, this is more obvious: First we check the items ID; if it fits, we check the items position;
if that fits, we delete it and create the opened (closed) version instead.

17.2. NPCs

IMPORTANT: NPCs MUST have a nextCycle() function, even if it is empty!
Simple NPCs are as simple as simple item scripts. However, they can grow rather large and be arbitrary
complex. Lets start with a simple one: He should simply react on ” Greetings” or ”greetings”.

function receiveText (texttype, message, originator)
if string.find(message,"[Gglreetings") ~“= nil then
thisNPC:talk(CCharacter.say, "Greetings, my friend.");
end
end

Note that we will need string operations intensively. The first one is hidden in ”[Gg]reetings”, which
means that the first letter can be both, a ”G” or a ”g”. If you implement that and test it, the NPC will
not react. The reason is rather simple: He does not understand you. In fact, he does not understand
any language at all. So we need to increase his language skill, common language preferably. But once he
learnd that, he does not need to learn it again, so he only needs to learn it one time. Here comes one
thing in quite handy: a script does not forget variables once set; if a variable was never set before, it is
nil. So, to check if the variable was set ever before, we need only to check if it is nil.

function receiveText (texttype, message, originator)
if iniVar == nil then
iniVar=1;
thisNPC:increaseSkill(1,"common language",100);
end
if string.find(message,"[Gglreetings") ~= nil then
thisNPC:talk(CCharacter.say, "Greetings, my friend.");
end
end

However, this one will only react on the second string he "hears”, because after the first one, he learns
common language and doesn’t understand anything. Afterwards, he will understand common language.
However if we want to add several keywords, we would have an endless and unelegant sequence of
if...elseif...elseif.. .elseif...elseif...end. To avoid that, we can use simple lists where we store the keywords
and the reactions and then just loop through them. We do not need to ”load” the lists everytime someone
talks to our NPC but only once for each server restart, meaning that we could initialize the lists like we
increase the language skill of the NPC.

function receiveText(texttype, message, originator)

44

if iniVar == nil then

end
for

end
end

To summarize: We fill the trigger texts and the answers into a list and then search in a loop the received
message for a trigger text in that list; if we find one, we let the NPC speak the corresponding answer.
We can create very simple dialog. It might be the case, and this is hoped much, that you want to create
answer” things. For example, lets add another thing to this
NPC: We want him to do a simple calculation and add together two numbers we tell him. Furthermore
we note that, once this NPC found a trigger in a received message, we do not want to search if there is
another trigger in the message. We will therefore restructure the for-loop and make a repeat..until-loop

more complex NPCs than just ”question

iniVar=1;

thisNPC:increaseSkill(1l,"common language",100);
NpcTrig=Q);

NpcAnsw=() ;

NpcTrigl[1]="[Gglreetings";
NpcAnsw([1]="Greetings, my friend.";
NpcTrig[2]="[Hh]ello";
NpcAnsw([2]="Hello. How are you?";

i=1,table.getn(NpcTrig) do

if string.find(message,NpcTrig[i])“=nil then
thisNPC:talk(CCharacter.say, NpcAnsw[i]);

end

”

instead, which is easier to stop once we found something.

function receiveText(texttype, message, originator)
if iniVar == nil then

end

i=0;

iniVar=1;

thisNPC:increaseSkill(1,"common language",100);
NpcTrig={};

NpcAnsw={};

NpcTrig[1]="[Gglreetings";
NpcAnsw([1]="Greetings, my friend.";
NpcTrig[2]="[Hh]ello";
NpcAnsw([2]="Hello. How are you?";

foundTrig=false;
repeat

i=i+1;

if string.find(message,NpcTrig[i]) “=nil then
thisNPC:talk(CCharacter.say, NpcAnsw[i]);
foundTrig=true;

end

until (i==table.getn(NpcTrig) or foundTrig==true)
if (foundTrig==false) then

if (string.find(message, "%d++%d") "=nil then

45

StartsAt,EndsAt,numberOne,numberTwo=string.find(message," (%d+)+(%d+)";
thisNPC:talk(CCharacter.say,"This is "..(numberOne+numberTwo)) ;
end
end
end

46

18. Common bugs

e Missing end, missing (or), script name and db-entry do not match (take care of invisible charac-
ters! Try a search in the db with e.g. SELECT FROM spells WHERE spl_sctiptname=’p_28.lua’)

.0 ” N

e A 7. instead of the seperator or vice versa. (7.” is for variables, ”:” for functions)

e Missing () for functions that don’t need parameters.

e Incorrect number of parameters for functions.

e Mispelled function names (use syntax highlighting!).

e Forgot #r in game to reload tables.

e = instead of == or vice versa.

e |= instead of =.

e Missing conversion of a string to a number (when reading from a string).

e Using a variable that does not exist in this function (e.g. originator in function nextCycle(...)
e Beware of endless loops; they freeze the server. Always ensure tha

e Program parts after return statement.

e Forgotten ”"then” in if-commands, forgotten ”end” in inline-if’s.

47

A. Versions

Version 4.3 (30 04 06)

* Added QuestProgress functions

* Added scheduledscripts

* Marked Longtimeeffects as active

* Corrected viewltemNr

Version 4.2 (10 11 05)

* Minor changes and additions (data)

Version 4.1 (23 09 05)
* Added new weapon struct variable
* Added combat functions

Version 4.0.0 (13 08 05)

* Added container commands
* Added variable types

* Removed some minor bugs

Version 3.2.0 (16 07 05)
* Updated dofile

* Added file io

* Updated index

* Changed layout

* Added new graphic

Version 3.1.1 (11 06 05)
* Deleted wrong version of itemInform
* Added index

Version 3.0.1 (11 06 05)
* Deleted wrong version of getItemName

Version 3.0.0 (10 06 05)

* Converted to INTEXformat

* Deleted unnecessary chapters

* Some additions, correcting mistakes, ...

Version 2.6.2 (02 06 05)
* Minor additions

Version 2.6.0 (29 05 05)

* Added new entry points
* Small corrections

* New commands

48

Version 2.5.0 (20 04 05)
* Added bugs
* Minor corrections and adaptions

Version 2.4.1 (18 04 05)

* Added further NPC examples
* Corrected minor formating bug
* Minor additions

Version 2.4 (14 04 05)

* Corrected minor errors

* Added new commands

* Added better description of items
* Added starts of NPC tutorial

Version 2.3.1 (06 04 05)

* Minor additions and corrections

Version 2.3 (01 04 05)
* Added a new section for a tutorial
* Minor corrections

Version 2.2.8 (29 03 05)
* Minor corrections
* Minor additions

Version 2.2.7 (27 02 05)

* Converted to WIKI-format

* Some language corrections

* Added some chapters from other versions

Version 2.2.6 (19 11 04)
* Corrected world:makeSound(...)

Version 2.2.5 (15 11 04)
* Corrected world:gfx(...)

Version 2.2.4 (11 11 04)
* Minor additions
* Minor regrouping of skill/attribute-commands

Version 2.2.3 (10 11 04)
* Added chapter ”Built in functions”

Version 0.2.2 (09 11 04)

* Minor correction on ”world:erase”.
* Deleted/Clearified last ?-lines.

49

Version 0.2.1 (07 11 04)
* Added chapter ”Item” and some content

Version 0.2 (07 11 04)
* Added Entry points

Version 0.1.1 (04 11 04)
* Corrected sendMenu-command

Version 0.1 (03 11 04)

* Roughly organized character-commands by topic
* Deleted (character):depot (-) command

* Changed sendMessage() to inform()

* Added some short descriptions

* German to english translations

* Changed world:erase-command

50

Index

Accuracy, 18
ActionPoints, 18
activeLanguage, 13
addEffect, 27
addItem, 14
addValue, 26
AgeingSpeed, 17
alterMessage, 7
AmmunitionType, 18
Attack, 18
attackmode, 13

BasicFighting, 34
BodyParts, 18

callEffect, 27
CastMagic, 32
CastMagicOnCharacter, 32
CastMagicOnField, 32
CastMagicOnltem, 32
CCharacter.say, 7
CCharacter.whisper, 7
CCharacter.yell, 7
changeltem, 21
changeQuality, 11, 21
changeQualityAt, 9, 11
changeQualityltem, 7
changeQualityOfTopltem, 23
changeTile, 20, 21
changeWeather, 25
CharacterOnField, 31
cloud_density, 25
countltem, 9, 11
countltemAt, 9
countltems, 23
createAtPos, 9
createltem, 9
createltemFromld, 19
createltemFromlItem, 19
createMonster, 20

51

data, 16

Defence, 18

distanceMetric, 12
distanceMetricToPosition, 12
dofile, 38

doubleEffect, 27

effectld, 27
effectName, 27
enemyNear, 33
enemyOnSight, 33
erase, 19
eraseltem, 9, 11

findValue, 27
fog_density, 25
forceWarp, 12

get_face_to, 8

get_race, 8

get_type, 8

get ArmorStruct, 22
getBackPack, 10
getCharacterOnField, 21
getCharactersInRangeOf, 21
getClippingActive, 12
getDepot, 10

getField, 19, 23
getltemAt, 10
getltemName, 21
getltemOnField, 20
getltemStats, 15, 20
getltemStatsFromld, 20
getMagicFlags, 9
getMagicType, 8
getMentalCapacity, 8
getMonstersInRangeOf, 21
getNatural Armor, 22
getNPCSInRangeOf, 21
getPlayerLanguage, 9

getPlayersInRangeOf, 21
getPlayersOnline, 21
getPoisonValue, 8
getQuestProgress, 9
getSkill, 7
getStackltem, 23
getTime, 19
getType, 15
getWeaponStruct, 22
gfx, 20
gust_strength, 25

id, 13, 16, 17

increase, 19
increaseAtPos, 9, 11
increaseAttrib, 8
increaseMentalCapacity, 8
increasePoisonValue, 8
increaseSkill, 7

inform, 7
insertContainer, 11
insertItem, 11
introduce, 7

isAdmin, 12
isCharacterOnF'ield, 20
islnRange, 12
islnRangeToPosition, 12
isltemOnField, 20
itemInform, 19

itempos, 16
ItemRotsOnField, 34

lastCalled, 27
lastSpokenText, 13
learn, 7

loadEffect, 27
LookAtItem, 5, 31
LTIncreaseHP, 9
LTIncreaseMana, 9

MagicDisturbance, 18
makeSound, 20
MenuStruct, 14

move, 7

MoveFromField, 34
MoveltemAfterMove, 31
MoveltemBeforeMove, 31
movepoints, 13
MoveToField, 33

name, 13

52

nextCalled, 27
NextCycle, 31
nextCycle, 32, 47
number, 16
numberCalled, 27

ObjectAfterRot, 17
onAttack, 33, 34
onAttacked, 32
onCasted, 32
onDeath, 32
onLogin, 34

owner, 15

percipitation_strength, 25
percipitation_type, 25
PoisonStrength, 18

pos, 13, 16

position, 6
PunctureArmor, 18
punctureArmor, 18
PutltemOnField, 34

quality, 16

Range, 18
receiveText, 32
removeEffect, 27
removeValue, 27
runes, 24

scheduledscripts, 34
sendMapUpdate, 21
sendMenu, 12, 14
setAttrib, 8
setClippingActive, 12
setMagicType, 8
setMentalCapacity, 8
setPoisonValue, 8
setQuestProgress, 9
startMusic, 12
Stiffness, 18
StrokeArmor, 18
strokeArmor, 18
swap, 19
swapAtPos, 9, 11
swapTopltem, 23

TakeltemFromField, 34
takeltemNr, 10
talk, 7

teachMagic, 9
tempChangeAttrib, 8
temperature, 25
thisNPC, 5, 13
thisSpell, 24
ThrustArmor, 18
thrustArmor, 18
thunderstorm, 25
tile, 23

Useltem, 31
UseltemWithCharacter, 31
UseltemWithField, 31
useMonster, 33
useMonsterWithCharacter, 33
useMonsterWithField, 33
useMonsterWithltem, 33
useNPC, 32
useNPCWithCharacter, 32
useNPCWithField, 32
useNPCWithltem, 32
useTile, 33
useTileWithCharacter, 33
useTileWithField, 33
useTileWithltem, 33

viewltemNr, 10
Volume, 11, 17

warp, 12
WeaponType, 18
wear, 16
weather, 22
Weight, 17
weight, 11
wind_dir, 25

X, 6
y, 6
z, 6

53

